apriori module

class apriori.Apriori(transactions, uniques, min_sup=2.0, min_conf=1.5)[source]

Bases: object

Apriori algorithm to find frequent itemset and extract the association rules

addrule(left, right)[source]

Adds the rule if it is greater than min conf

Parameters:
  • left – Left hand side itemset (list)
  • right – Right hand side itemset (list)
Returns:

apriori_gen(Fk, k)[source]

Used to generate size k candidates based on the frequent itemsets Fk

:param Fk list of k-1 itemsets, k:number of items that should have the new itemsets :return: new_candidates: list of size k-itemsets,

apriori_run()[source]

Main frequent itemset generation algorithm - Apriori.

Returns:Frequent itemsets (dict)
confidence(left, right, left_precalculated=None)[source]

Calculates the confidence of the rule

Parameters:
  • left – left handside of the rule (list)
  • right – right handside of the rule (list)
  • left_precalculated – Existing suppport count value
Returns:

Confidence value (float)

diffelems(list1, list2)[source]
Extracts the difference elements in lists, symmetrically.
For example:
list1 = [‘a’,’b’,’c’], list2 = [‘b’,’c’] diffelems(list1, list2) # regardless of order it will return same result returns -> [‘a’]
Parameters:
  • list1 – First list to be compared
  • list2 – Second list to be compared
Returns:

The difference elements of first and second lists

export(path)[source]

Export rules in PMML format to visualize later on using R-packages.

Parameters:path – path to write the PMML file
Returns:True on on successful operation
extract()[source]

Association rule extraction method

Returns:
freq1_itemsets(f1itemsets)[source]

Extracts the 1 length frequent itemsets

Parameters:f1itemsets – 1-length frequent itemsets (dict)
Returns:1-length frequent itemsets (list) greater that self.min_sup
lift(left, right, right_precalculated=None)[source]

Calculates the lift of the rule

Parameters:
  • left – left handside of the rule (list)
  • right – right handside of the rule (list)
  • right_precalculated – Existing suppport count value
Returns:

Confidence value (float)

save_freqis(path='frequent_itemsets.csv')[source]

Save the frequent itemsets into a file

Parameters:path – Path to be saved
Returns:Returns true on successful save
save_rules(path='arules.csv')[source]

Saves the association rules into a file

Parameters:path – Path to be saved
Returns:Returns true on successful action
support(itemset, itemset_precalculated=None)[source]

Counts support

Parameters:
  • itemset – itemset (list)
  • itemset_precalculated – Existing suppport count value
Returns:

support of the itemset (float)

support_count(itemset)[source]

Computes the support count of the itemset

Parameters:itemset – itemset to be counted (list)
Returns:support count of the itemset (int)