apriori module¶
-
class
apriori.
Apriori
(transactions, uniques, min_sup=2.0, min_conf=1.5)[source]¶ Bases:
object
Apriori algorithm to find frequent itemset and extract the association rules
-
addrule
(left, right)[source]¶ Adds the rule if it is greater than min conf
Parameters: - left – Left hand side itemset (list)
- right – Right hand side itemset (list)
Returns:
-
apriori_gen
(Fk, k)[source]¶ Used to generate size k candidates based on the frequent itemsets Fk
:param Fk list of k-1 itemsets, k:number of items that should have the new itemsets :return: new_candidates: list of size k-itemsets,
-
apriori_run
()[source]¶ Main frequent itemset generation algorithm - Apriori.
Returns: Frequent itemsets (dict)
-
confidence
(left, right, left_precalculated=None)[source]¶ Calculates the confidence of the rule
Parameters: - left – left handside of the rule (list)
- right – right handside of the rule (list)
- left_precalculated – Existing suppport count value
Returns: Confidence value (float)
-
diffelems
(list1, list2)[source]¶ - Extracts the difference elements in lists, symmetrically.
- For example:
- list1 = [‘a’,’b’,’c’], list2 = [‘b’,’c’] diffelems(list1, list2) # regardless of order it will return same result returns -> [‘a’]
Parameters: - list1 – First list to be compared
- list2 – Second list to be compared
Returns: The difference elements of first and second lists
-
export
(path)[source]¶ Export rules in PMML format to visualize later on using R-packages.
Parameters: path – path to write the PMML file Returns: True on on successful operation
-
freq1_itemsets
(f1itemsets)[source]¶ Extracts the 1 length frequent itemsets
Parameters: f1itemsets – 1-length frequent itemsets (dict) Returns: 1-length frequent itemsets (list) greater that self.min_sup
-
lift
(left, right, right_precalculated=None)[source]¶ Calculates the lift of the rule
Parameters: - left – left handside of the rule (list)
- right – right handside of the rule (list)
- right_precalculated – Existing suppport count value
Returns: Confidence value (float)
-
save_freqis
(path='frequent_itemsets.csv')[source]¶ Save the frequent itemsets into a file
Parameters: path – Path to be saved Returns: Returns true on successful save
-
save_rules
(path='arules.csv')[source]¶ Saves the association rules into a file
Parameters: path – Path to be saved Returns: Returns true on successful action
-